Improving Multi-task Stance Detection with Multi-task Interaction Network

Heyan Chai¹, Siyu Tang¹, Jinhao Cui¹, Ye Ding², Binxing Fang^{1,3} and Qing Liao^{1,3*}

¹ Harbin Institute of Technology, Shenzhen, China

² Dongguan University of Technology, China

³ Peng Cheng Laboratory, Shenzhen, China

{chaiheyan,tangsiyu999}@stu.hit.edu.cn,gcjh777@163.com

dingye@dgut.edu.cn,fangbx@cae.cn,liaoqing@hit.edu.cn

(EMNLP-2022)

code: None

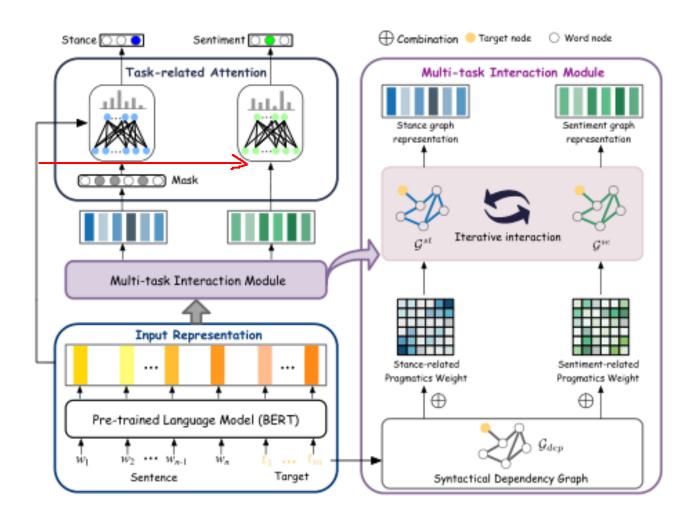
- 1. Introduction
- 2. Approach
- 3. Experiments

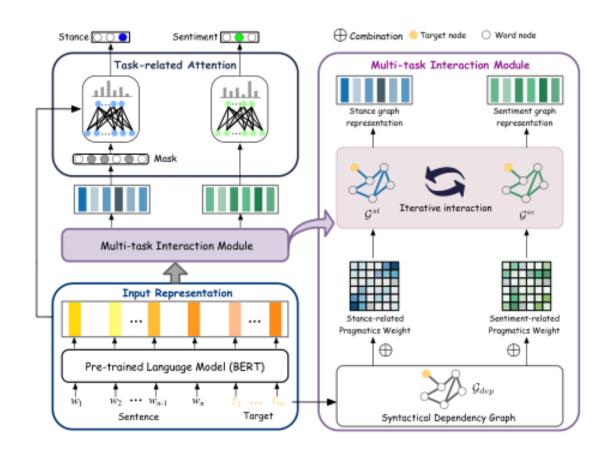
Introduction

	Tweet	Target	Stance	Sentiment	
Example 1	Pregnant people have feelings, and the ability to make decisions about their health	Legalization of abortion	Favor	Positive	
	They have not the ability and shouldn't make decisions that involve their health	Legalization of abortion	Favor	Negative	
Example 2	I have an immune system that works fine, masks harm our immune system	Wearing a face mask	Against	Positive	
	I have next to no immune system right now so thanks to all wearing masks	Wearing a face mask	Favor	Positive	

Above MTL models only focus on extracting contextual task representations and sentence-based features as the shared information across different tasks to identify stances and classify sentiments of sentences, ignoring the word-level task-specific information.

Figure 1: Examples of MTL stance detection.





$$\mathcal{D}_{s} = \{(s_{i}, a_{i}, y_{i}^{st}, y_{i}^{se})\}_{i=1}^{N_{s}}$$

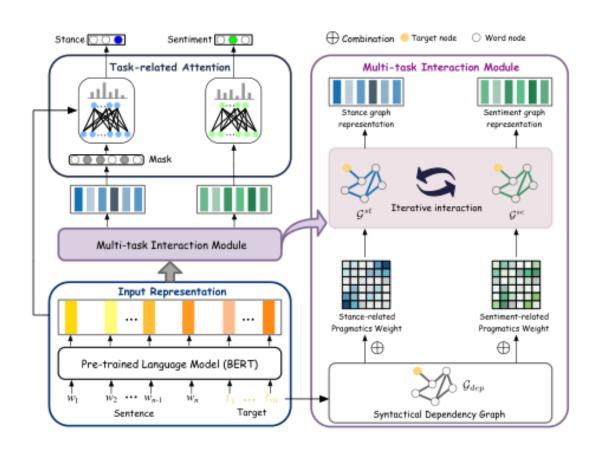
$$\mathcal{D}_{q} = \{(s_{i}, a_{i})\}_{i=1}^{N_{q}}$$

$$\mathcal{F}(s_{i}, a_{i}) = \{\hat{y}_{i}^{se}, \hat{y}_{i}^{st}\} \approx \{y_{i}^{se}, y_{i}^{st}\}.$$

$$s = \{w_{i}\}_{i=1}^{n} \quad a = \{w_{i}\}_{i=1}^{m}$$

$$h = BERT([CLS]s[SEP]a[SEP]) \quad (1)$$

$$h = \{h_{1}, h_{2}, \dots, h_{(n+m)}\} \quad h \in \mathbb{R}^{(n+m) \times d_{m}}$$



$$\mathcal{A}_{dep}[i,j] = \begin{cases} 1 & \text{if } \mathcal{T}(w_i, w_j) \text{ or } \mathcal{T}(w_j, w_i), \\ 1 & \text{if } i = j, \\ 0 & \text{otherwise} \end{cases}$$
(2)

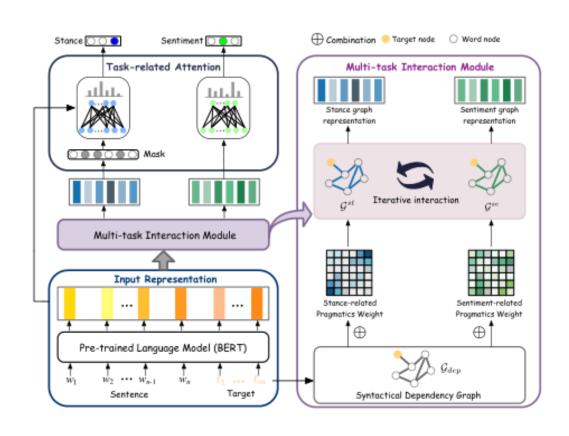
$$p(w_i) = \frac{N(w_i)}{N}, \ \varphi(w_i) = \frac{p(w_i) - \mu(p(\cdot))}{\sigma(p(\cdot))}$$
 (3)

$$\rho^{t}(w_{i}) = \left| \frac{N^{t}(w_{i}, label_{+})}{N^{t}(label_{+})} - \frac{N^{t}(w_{i}, label_{-})}{N^{t}(label_{-})} \right|$$
(4)

$$\phi^t(w_i) = 1 + \frac{\rho^t(w_i) - \mu(\rho^t)}{\sigma(\rho^t)}, \quad w_i \in s \quad (5)$$

$$\mathcal{A}^{t}[i,j] = \begin{cases} \sum_{k \in \{i,j\}} \phi^{t}(w_{k})\varphi(w_{k}) & \text{if } \mathcal{A}_{dep}[i,j] = 1, \\ 0 & \text{otherwise} \end{cases}$$
(6)

$$t \in \{st, se\}$$



$$e_{i} = \begin{cases} 1 - \frac{n+1-i}{n+m} & 1 \leq i < n+1 \\ 0 & n+1 \leq i \leq n+m \end{cases}$$

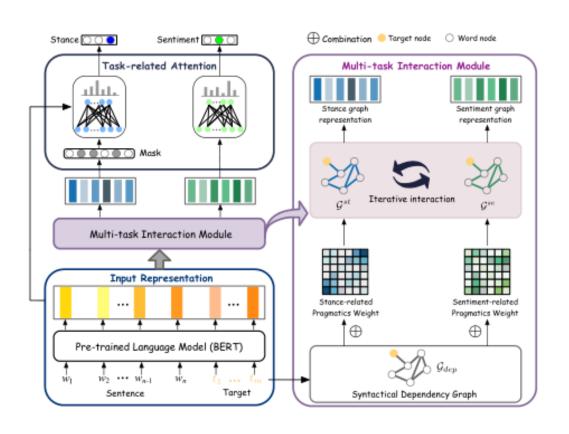
$$\hat{\boldsymbol{h}}_{i} = e_{i}\boldsymbol{h}_{i}.$$

$$\hat{\boldsymbol{h}} = \{\hat{\boldsymbol{h}}_{1}, \hat{\boldsymbol{h}}_{2}, \cdots, \hat{\boldsymbol{h}}_{n+m}\}$$

$$\boldsymbol{g}^{st,l} = \text{ReLU}\left(\boldsymbol{E}_{se}^{\frac{1}{2}}\tilde{\mathcal{A}}^{se}\boldsymbol{E}_{se}^{-\frac{1}{2}}\boldsymbol{g}^{se,l-1}\boldsymbol{W}_{st}^{l}\right)$$
(8)
$$\boldsymbol{g}^{se,l} = \text{ReLU}\left(\boldsymbol{E}_{st}^{\frac{1}{2}}\tilde{\mathcal{A}}^{st}\boldsymbol{E}_{st}^{-\frac{1}{2}}\boldsymbol{g}^{st,l}\boldsymbol{W}_{se}^{l}\right)$$
(9)
$$\tilde{\mathcal{A}}^{t} = \mathcal{A}^{t} + \boldsymbol{I}, \text{ where } \boldsymbol{E}_{t} = \sum_{j}(\mathcal{A}_{j}^{t} + \boldsymbol{I})$$

$$\boldsymbol{g}^{se,0} = \hat{\boldsymbol{h}} = \{\hat{\boldsymbol{h}}_{1}, \cdots, \hat{\boldsymbol{h}}_{n+m}\}$$

$$t \in \{st, se\}$$



$$mask_{i} = \begin{cases} 0 & 1 \leq i < n+1\\ 1 & n+1 \leq i \leq n+m \end{cases}$$

$$\hat{\boldsymbol{g}}^{st,L} = mask \times \boldsymbol{g}^{st,L}$$

$$(10)$$

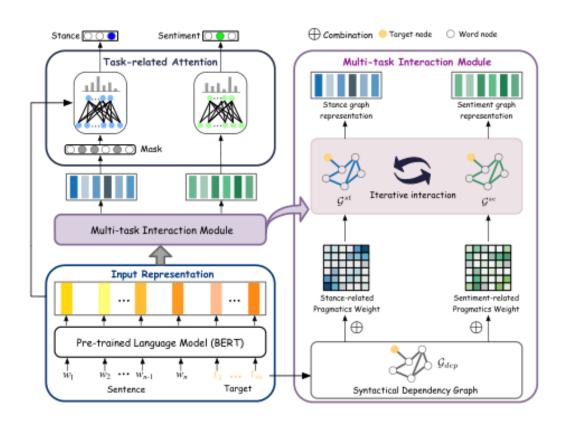
$$\beta_k = \sum_{i=1}^{m+n} \boldsymbol{h}_k^{\top} \hat{\boldsymbol{g}}_i^{st,L}, \ \alpha_k = \frac{\exp(\beta_k)}{\sum_{i=1}^n \exp(\beta_i)}$$
 (11)

$$m{r}^{st} = \sum_{k=1}^{m+n} lpha_k m{h}_k$$

$$\beta'_{k} = \sum_{i=1}^{m+n} \boldsymbol{h}_{k}^{\top} \boldsymbol{g}_{i}^{se,L}, \ \alpha'_{k} = \frac{\exp(\beta'_{k})}{\sum_{i=1}^{n} \exp(\beta'_{i})} \quad (12)$$

$$m{r}^{se} = \sum_{k=1}^{m+n} lpha_k' m{h}_k$$

$$\hat{\boldsymbol{y}}^t = softmax(\boldsymbol{W}^t \boldsymbol{r}^t + \boldsymbol{b}^t)$$



$$\mathcal{L} = -\sum_{i=1}^{N_s} (\lambda_1 y_i^{st} \log \hat{y}_i^{st} + \lambda_2 y_i^{se} \log \hat{y}_i^{se}) + \lambda_3 \|\Theta\|_2$$
 (13)

$$F_{avg} = \frac{F_{\text{favor}} + F_{\text{against}}}{2} \tag{14}$$

$$F_{\text{favor}} = \frac{2P_{\text{favor}} R_{\text{favor}}}{P_{\text{favor}} + R_{\text{favor}}} \qquad F_{\text{against}} = \frac{2P_{\text{against}} R_{\text{against}}}{P_{\text{against}} + R_{\text{against}}}$$

Dataset	Category	Stance Task			Sentiment Task			
2 41111501		Favor	Against	Neither	Positive	Neutral	Negative	
SemEval16	Train	753	1395	766	962	189	1763	
	Test	304	715	230	368	90	791	
COVID19	Train	1252	750	748	451	360	1939	
	Test	306	205	176	108	82	497	

Table 1: Statistics for the two datasets.

Category	Model	SemEval16		COVID19	
Carregory	1.120.001	$MacF_{avg}$	F_{avg}	$MacF_{avg}$	F_{avg}
	SVM-ngram (Mohammad et al., 2016)	0.580	0.689	0.584	0.654
CTI	MITRE (Mohammad et al., 2016)	0.560^{\dagger}	0.678^{\dagger}	_	-
STL	pkudblab (Mohammad et al., 2016)	0.586^{\dagger}	0.673^{\dagger}	_	-
	BERT (Devlin et al., 2019)	0.536	0.646	0.619	0.647
	SCN (Yang et al., 2020a)	0.545	0.613	0.512	0.533
	KEMLM (Kawintiranon and Singh, 2021)	0.556	0.641	0.619	0.644
	TextGCN (Yao et al., 2019)	0.599	0.653	0.557	0.588
	TextING (Zhang et al., 2020)	0.597	0.658	0.589	0.609
	FCS (Sun et al., 2019)	0.602	0.692	-	-
	BERTtoCNN (Li et al., 2021a)	-	0.678	-	-
	AT-JSS (Li and Caragea, 2019)	0.513	0.600	0.566	0.595
MTL	Tchebycheff (Mao et al., 2020)	0.504	0.573	0.581	0.605
	BanditMTL (Mao et al., 2021)	0.540	0.608	0.601	0.619
Ours	MTIN w/o SE	0.578	0.645	0.622	0.638
	MTIN-BiLSTM	0.643	0.689	0.647	<u>0.666</u>
	MTIN (Ours)	0.649	0.703	0.653	0.679

Table 2: Experimental results of stance detection task on two datasets. Average $MacF_{avg}$ and F_{avg} over 3 runs with random initialization. The best and second-best results are in bold and underlined, respectively. The results with \dagger are retrieved from semantic evaluation (SemEval-2016).

Category	Model	Sem	Eval16	COVID19		
		ACC_{avg}	$F1$ - $score_{avg}$	ACC_{avg}	$F1$ -score $_{avg}$	
	BERT (Devlin et al., 2019)	0.776	0.791	0.687	0.734	
STL	ABCDM (Basiri et al., 2021)	0.685	0.651	0.633	0.562	
SIL	ISA (Barnes et al., 2021)	0.662	0.632	0.664	0.606	
	TextGCN (Yao et al., 2019)	0.775	0.790	0.728	0.695	
	TextING (Zhang et al., 2020)	0.774	0.753	0.736	0.564	
MTL	AT-JSS (Li and Caragea, 2019)	0.709	0.644	0.669	0.562	
	Tchebycheff (Mao et al., 2020)	0.699	0.565	0.604	0.501	
	BanditMTL (Mao et al., 2021)	0.654	0.594	0.658	0.580	
Ours	MTIN w/o ST	0.773	0.798	0.741	0.718	
	MTIN-BiLSTM	0.781	0.802	0.761	0.746	
	MTIN (Ours)	0.807	<u>0.796</u>	0.785	0.762	

Table 3: Experimental results of sentiment analysis task on two datasets. Average F1-score_{avg} and ACC_{avg} over 3 runs with random initialization. The best and second-best results are in bold and underlined, respectively.

Model	ST ta	sk	SI	SE task		
Model	$MacF_{avg}$	F_{avg}	ACC_{avg}	F1-score _{avg}		
MTIN with cos sim	0.573	0.640	0.737	0.725		
MTIN with TF-IDF	0.526	0.594	0.730	0.727		
MTIN with Fixed	0.582	0.657	0.771	0.771		
MTIN (Ours)	0.649	0.703	0.807	0.796		

Table 4: Ablation study results of ST and SE task on SemEval16 dataset.

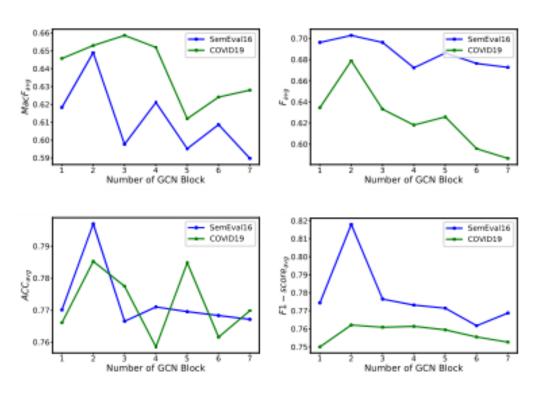


Figure 3: Performance of setting different numbers of interactions between task-related graphs.

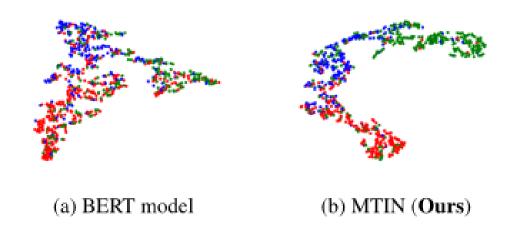


Figure 4: Visualization of intermediate vector representations. Red=*Against*, blue=*Neither*, green=*Favor*.

Model	Target	Attention Visualization	Prediction	Label
TextGCN	FM	I believe that every woman should have their own rights.	Against X	Favor
	WFM	Not wearing a mask because I am in my own greenhouse.	Favor X	Against
BERT	FM	I believe that every woman should have their own rights.	Favor√	Favor
	WFM	Not wearing a mask because I am in my own greenhouse.	Favor 🗡	Against
MTIN	FM	I believe that every woman should have their own rights.	Favor√	Favor
	WFM	Not wearing a mask because I am in my own greenhouse.	Against√	Against

Table 5: Case study. Visualization of attention scores from BERT, TextGCN, and MTIN on testing examples of SemEval16 and COVID19 datasets, along with their predictions and corresponding ground truth labels. The target FM (Feminist Movement) and WFM (Wearing a Face Mask) are from SemEval16 and COVID19 datasets respectively. The marker ✓ and ✗ indicate the correct and incorrect predictions, respectively.

Thank you!